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Abstract

Tetra Pak is a world leader in the food packaging industry and has been so for a
very long time. In recent years however, they are experiencing increased competi-
tion from low-cost suppliers selling their previously patented paper as a commodity.
This has forced Tetra Pak to focus more on selling complete systems and services.
One such potential service is condition monitoring coupled with predictive main-
tenance of their packaging machines. In a packaging machine, there are electrical
components called inductors that are used for sealing packages.

In this thesis, a model for predicting the remaining useful life of an inductor
is built. Around 8 months of high resolution data is analysed and processed. The
primary tool for data processing is Matlab, and the predictive model is built using
Machine Learning algorithms in Microsoft’s analytics software Azure. In the data
there are clear and visible trends of the inductor degenerating, but the precision
of the predictive model is far too low to be useful in any real world-world scenario
- more data is probably needed.

Keywords: Analytics, Machine Learning, Microsoft Azure, Condition
Monitoring, Predictive Maintenance
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Chapter 2
Introduction

2.1 Problem formulation, goals and scientific method

Tetra Pak packages beverages and food in packages made of a type of
carton. In the packaging process there is a step where the packages are
sealed using a well known industry technique called induction heating.
A physical electronic part called an inductor is used to heat up the
packaging material so that it melts together. This is achieved by run-
ning a current through the inductor which in turn will induce a current
in the packaging material, heating it. The inductor is the part that this
thesis will focus on.

A problem Tetra Pak faces is that it’s difficult to tell when an in-
ductor is worn out. The inductor is interesting because the part itself
is quite expensive to replace, but more importantly is it very expensive
to have machine downtime caused by malfunctioning equipment. Tetra
Pak has recently started several initiatives regarding data analytics,
condition monitoring and predictive maintenance. The general idea is
that it should be possible to tell the state of a physical machine part by
analysing data from different sensors and control equipment. Machines
with inductors have been operating for a very long time, but to be able
to perform analytics there has to be high resolution data which has
not been collected historically. Equipment for gathering high resolu-
tion data from inductors have been installed on 3 machines in a plant
in Italy, and data has been collected for a around 8 months. The data
collected is electrical measurements such as voltage, impedance, phase
etc.

The project will try answer the following question: "Given 8 months
of historical inductor data, can we predict the remaining lifetime of an
inductor currently running?". To accomplish this, extensive data analy-
sis will be conducted using mainly MATLAB and Microsoft’s analytics
software Azure. Azure has a multitude of built-in tools for creating
statistical predictive models. The goal is to create a predictive model
that can predict the remaining useful life of an inductor to some extent.
The project is not meant to produce a final version that goes live, but
rather a proof-of-concept that indicates whether it is possible to build

1
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predictive models of inductors.
The scientific method primarily used will be data analysis. The data

collection is already completed by Tetra Pak, but a significant part of
the thesis will be selecting relevant data from this pool of data. Before
this selection process, interviews and discussions with people that have
knowledge in the field of inductors will be carried out internally at Tetra
Pak to limit the scope of the data analysis. One or more interviews will
be carried out with professionals in the field of analytics and predictive
modelling to gain insights in how best tackle model building with large
amounts of data. The hypothesis is that it is possible to make mean-
ingful predictions of inductor lifetime by building statistical predictive
models using the data collected so far.

2.2 Tetra Pak

Tetra Pak is a global and multi national company in the food packaging
and processing industry, with focus on liquid foods and beverages. The
head office is situated in Lund, which also is the place that this thesis
has been carried out. The company, founded in 1951, has a long history
as one of the world leaders in their industry. See figure 2.1 for some
key figures.

Figure 2.1: Tetra Pak in numbers - a world leading company.

Tetra Pak is divided into two main parts; processing and packag-
ing. Processing concerns all production steps leading up to the finished
product, i.e. raw material, mixing, and pasteurizing. Once the product
is finished, packaging takes over and puts it in a specific package, and
also takes care of distributing the product after it is packaged. This the-
sis is mostly about the packaging side, since the part being analyzed is
on a packaging machine. Tetra Pak has been selling machines for a very
long time, and therefore have an enormous installed base of machines
worldwide. See figure 2.2.
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Figure 2.2: Tetra Pak’s installed base.

2.2.1 Increasing competition from Non System Suppliers

Traditionally and up to some years ago, Tetra Pak had a patent on the
packaging material that is used in the packages. The patent concerned
how paper and plastics is put together to produce a strong, waterproof
material. Examples of different packages are shown in figure 2.3. The
business model has been selling the machines at a very low margin
to customers, making it possible to start up a factory without a huge
investment. Once the factory is up and running, Tetra Pak can take
very good margins on the packaging material and thus have a very
stable and profitable business secured for many years.

Figure 2.3: Typical Tetra Pak packages.

Since the patent has ran out, Tetra Pak does no longer have this
advantage with the material patent, meaning customers can buy the
packaging machine from Tetra Pak, and then the paper from some low-
cost supplier. These suppliers are referred to as Non-system Suppliers
(NSS), as they only sell paper as a commodity, and not the complete
packaging solution system as Tetra Pak does. Understandably, it is
difficult to compete with large scale, low cost manufacturers from for
example Asia. The NSS do not have to bear costs for manufacturing
machines and the massive Research and Development as Tetra Pak
does.

For Tetra Pak to be able to compete with the NSS, they have to
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put their emphasis on selling a complete system for processing and
packaging food. The most important parts of this is the processing and
packaging parts, inside the actual production plant. However, looking
further up and down the value chain there are many other parts such
as raw material warehousing, finished goods warehousing, distribution
and interfacing to ERP systems. For an overview of a typical Tetra Pak
plant, see figure 2.4.

Figure 2.4: Example of factory layout.

2.2.2 Tetra Pak services

Because Tetra Pak supplies complete solutions and systems to its cus-
tomers, much of the offering is actually services rather than machines
and equipment. Tetra Pak are unique in the way that they have had a
very strong position within the industry for a very long time. Thanks to
this, there is very deep domain knowledge within the company. There
are numerous companies that can compete with Tetra Pak on delivering
in a specific area of competence, like automation, food processing etc.
However there are very few that can deliver the same range of services
and complete solutions as Tetra Pak can. The competitors that exist
are much smaller than Tetra Pak. Having this breadth and depth of
knowledge is what makes Tetra Pak stand out, and it is with this that
Tetra Pak will have to compete in the coming years.

Currently the main service offering is within maintenance. There
are of course numerous versions of maintenance services, but Tetra Pak
offers three major kinds. The first is simply selling spare parts to the
machines they build. The second is cost guaranteed maintenance, which
means that Tetra Pak does all maintenance at a predefined, fixed price.
The third option is performance guarantee, where Tetra Pak promises
a certain level of operational performance at a predefined price.

Apart from maintenance, Teta Pak offers a service called bench-
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marking or "Expert Services" where experienced consultants from Tetra
Pak measure the operational efficiency of a plant and compares the cus-
tomer’s efficiency to that of its competitors. If it turns out that the
competitors are much better, Tetra Pak can offer additional services
and equipment to increase efficiency at the plant. In the case that the
customer is already among the best among competitors, Tetra Pak can
offer services and consulting to make sure they stay ahead.

2.3 Analytics

To try to put this Master Thesis in a context I will try to explain what
is going on in the world with regards to data and analtyics around this
time (2016). A few internet searches for "data buzzwords" and similar,
resulted in the picture shown in figure 2.5.

Figure 2.5: Data Buzzwords 2016.

The point of the figure is to show that data and analytics is a very
hot topic around the world in many industries and companies. There
are a lot of factors that has put data in the centre of attention. An inter-
view was conducted with employees from two Data Science companies
- EvalueServe and TeraData. Their view was that there is a great shift
going on in the world, from delivering great products to more focus
on services. A few different company examples were discussed in the
interview [9]:

• E-commerce - Companies such as Google, Facebook, Amazon, Ebay,
Netflix are almost completely based on data. They are the main
drivers and innovators in the industry. Data is their core business
and these companies play a large role in the expansion of data
acquisition and data driven services and analytics.
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• Banks and finance - These companies have always collected a lot of
data but not used it to its fullest potential. Recently many tools
for analytics have emerged, making it easier to use the data for
making decisions. A common example is automatically segment-
ing customers in different risk classes using only transaction his-
tory.

• Telecom - Telecom companies are experiencing a heavy shift away
from traditional phone business to more focus on moving data.

• Aerospace - Boeing and Airbus are manufacturers of airplanes that
have shifted their business models from simply selling airplanes to
selling hours in the air. Airplanes motors is a common example
within condition based maintenance, which implies heavy use of
data.

There are many factors enabling the shift towards data. Usage of
smartphones and people with an internet connection grows constantly,
making it easier than ever to share data. Computational power has
also become much cheaper. Combining these factors creates endless
possibilities to transform traditional industries such as manufacturing.
It seems a very good fit, since many of the traditional companies have
worked with automation and such for a very long time, and already
have a lot of the infrastructure for data collection in place. Large IT
companies have released services that revolves around analytics. Google
Analytics, Microsoft Azure and IBM Watson Analytics are examples of
some of the major players on the market.

The website BusinessDictionary [6] defines analytics as follows: "An-
alytics often involves studying past historical data to research potential
trends, to analyze the effects of certain decisions or events, or to eval-
uate the performance of a given tool or scenario. The goal of analytics
is to improve the business by gaining knowledge which can be used to
make improvements or changes." [6]. To summarize it is anything done
with data that is helpful in making business decisions. Businesses has
obviously always used data to help them make decisions, but with com-
panies nowadays becoming almost complete digitized and large amounts
if IT solutions becoming available at low costs, analytics can now be
performed on a much large scale.

2.4 Condition Monitoring and Predictive Maintenance

Condition monitoring (CM) is the process by which a condition param-
eter in a machine is closely monitored to be able to see changes in the
machinery. By identifying changes in equipment before a serious fault
occurs, maintenance can be planned and carried out in advance. This
is known as Predictive Maintenance.

The concept itself is not new; in the most simple format it basically
consists of inspecting the machine to see how it’s doing. In a report from
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1975 [10] the authors go through both technical and economic details of
condition monitoring. The interest of the field has risen considerably as
industries get more and more automated, and implementations of new
and advanced IT systems brings a lot of possibilities.

There are many different techniques and strategies that are used
within condition monitoring. One of the most common is vibration di-
agnostics of machinery, often motors. The vibrations of a machine are
recorded and analyzed for a long period of time, enabling finding degen-
eration patterns in the vibration data. This has a significant advantage
over manual inspection performed by a maintenance technician, since
nothing needs to be inspected visually, and there is no need to take the
machine apart. Another example is electrical thermography [2] where
infrared technology is used to monitor temperatures of components.
Basically any variable or measurement that indicates the health of a
machine or piece of equipment can be used as a condition parameter to
perform Condition Monitoring and Predictive Maintenance.

2.5 Introduction to Machine Learning

Machine Learning is an extremely broad topic that contains many dif-
ferent fields of study and applications. There is a well known definition
from 1959 of what Machine Learning is, given by computer scientist
Arthur Samuel: ’Machine Learning is the field of study that gives com-
puters the ability to learn without being explicitly programmed.’ [11].
Machine Learning is often used to tackle complex problems that cannot
be solved using traditional programming.

Algorithms using Machine Learning are often divided into two main
sub-groups: supervised machine learning and unsupervised machine
learning. In an unsupervised learning environment, an algorithm is
given a large amount of unsorted data and tries to find useful relation-
ships and pattern in it. Unsupervised learning is more advanced and
not as commonly used as supervised learning.

In a supervised learning process (which is what will be used in this
thesis project), an algorithm is trained on existing data, where there
is a "right answer" present. Once trained, the algorithm can be used
on never before seen data and hopefully make meaningful predictions.
A commonly used example is that of predicting house prices based on
certain input parameters.[11] Starting off there is a data-set of apart-
ments showing size in square meters, and price of the apartment. The
example is illustrated in figure 2.6 where x-axis shows size and y-axis
price. There are a total of 100 square meters-price pairs, and the trained
model is illustrated by the the red line. By training the model using
more and more data, it will successively become a closer representation
of the data-set. Having trained the model using 100 examples, it can
be used to predict the price of an appartment given only the size in
square meters.
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Figure 2.6: Machine Learning example - training a model.

The example above is very simplified and suggests that the price
depends only on the size, which does not seem like a very good model.
To improve it, the model can be expanded by adding more variables
such as the number of bathrooms, floor number, distance to subway
station, year of kitchen renovation etc. The problem quickly becomes
very advanced, and we can’t really visualize more than three dimensions
conveniently. However, the same technique by fitting a model to the
data still applies. In the example above, a price-predicton function P
is defined as follows:

P (x1) = a+ b ∗ x1

Where P is the price of the appartment and x1 is the size in square
meters. When the model is trained, the values of a and b are tweaked
to fit the data as closely as possible. In this case it’s simply linear
regression (see figure 2.6). A more advanced example could be a price-
prediction function P :

P (x1, x2, x3, x4) = a+ b ∗ x1 + c ∗ x2 + d ∗ x3 + e ∗ x4

Where P is price, x1 size, x2 number of bathrooms, x3 distance to
subway station and x4 year of latest kitchen renovation. The same
principle applies, the coefficients are tweaked to fit the data as closely
as possible. In real world examples, it’s not uncommon that there are
20 or more variables in the data set.



“output” — 2016/10/10 — 18:55 — page 9 — #21

Introduction 9

When fitting the data, there are numerous strategies that can be
used and the strategies will often produce slightly different results,
sometimes completely different. One example could be to define a func-
tion that is the square of the distances from the data points to the fitted
line. By minimizing this function (knows as least squares fitting), the
optimal fitted line is found. A common algorithm to do this in Machine
Learning settings is called Gradient Descent[4]. The algorithm starts
out in one point of the function, and takes a step in the direction of the
negative gradient (i.e. the opposite way of the direction with maximum
change). By repeating this this step, the local minimum of the function
will be found. If the minimum is found, this means that the optimal
fitted line is also found.

2.6 Microsoft Azure

Azure, the data analytics tool used in this project, is a tool developed
by Microsoft, and according to the company itself Azure is a "growing
collection of integrated cloud services - analytics, computing, database,
mobile, networking, storage, and web - for moving faster, achieving
more, and saving money."[5]. The tool is used completely from a web
browser where you can do all kinds of data analysis and build predictive
models. The data is imported from any source: a local computer, an
online database etc.

One advantage of Azure is that it is completely scalable. This means
that a company can start a small project to see if it works out. Should
it work, it takes very little effort to scale the solution up and bring it
live for their customers to use. This should be compared to investing
heavily in hardware and IT solutions that then have to be maintained.

2.6.1 Training models and algorithms

Azure revolves around modules that contain pre-programmed actions.
An example is displayed in figure 2.7. A dataset with weather data has
already been imported into Azure and is available in any model you
want to build. The data is split into training data and testing data.
A common approach is to use 80% of the data for training the model,
and save 20% to later see if the model works. A Train Model module
is fed with the 80% training data, together with a Linear Regression
algorithm, this produces a trained model. The model is scored by us-
ing the 20% testing data, and the output is various measures showing
how well the trained model performed when used on unseen data. For
example mean absolute error of the predicted variable or coefficient of
determination for the algorithm. This example illustrate a common,
simple predictive model in Azure.

There are many techniques and algorithms used in predictive ap-
plications, but the cornerstone of most algorithms is regression as de-
scribed in the example with predicting houseing prices. There are nu-
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Figure 2.7: Simple predictive model in Azure.

merous kinds of regression models that behave slightly different but
all build on the same concept of fitting lines to data to produce a de-
scriptive equation or model. In this project, four different regression
models were used to predict Remaining Useful Life (RUL) of a machine
part as closely as possible: Linear regression, Neural Network Regres-
sion, Boosted Decision Tree Regression and Decision Forest Regression.
Since this thesis focuses more on the implementation and not so much
on the statistical theory I have not gone into detail about the statistics
behind the models since this is not the point of this project. It does not
matter so much which models I pick, but rather the process of using
many different models and comparing them to each other. Using this
strategy, the implementation work in this thesis can be re-used with
any statistical models in Azure.

An alternative to using pure regression models would’ve been to use
classification models, where you try to determine if the variable falls in a
certain category. A model answering the question "Will this part break
within 10 days? - yes or no" is an example of binary classification, which
indicates that there are only two outcomes. Multiclass classification is
similar, but has more than two options, for example: "How much RUL
does this part have? 0 to 10 days, 10 to 20 days, or longer?

To determine how well a predictive model performs I have used a
measurement called coefficient of determination (COD) which is con-
sidered standard and widely used in predictive applications. The coeffi-
cient of determination is the square of the correlation between predicted
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y scores and actual y scores.[1]. COD of 0 means that the variable can-
not be predicted at all, and a COD of 1 means that the variable can be
predicted without error, i.e. perfectly. A COD of 0.3 means that 30%
of the variance in the the variable can be predicted, etc. As a second
measure of model performance, Mean Absolute Error has been used.
The reason is that it is easier to get a grip of how large the predictive
error is, counted in days.

2.7 Previous Condition Monitoring studies at Tetra Pak

There has already been a substantial amount of research in the field
of condition monitoring at Tetra Pak. Since the food packaging indus-
try is heavily automated and Tetra Pak is one of the most advanced
solution providers, the realization that machine generated data holds
valuable information is not new. Since approximately 2005 there have
been different initiatives from Tetra Pak R&D. However, it is not until
recent years that they have gotten closer to implementing and selling
monitoring services on a large scale. Two examples of previous work
will be covered briefly in this section. What is ideally accomplished
is changing a part at the exact time it is worn out, thus minimizing
amount of spare parts needed to be bought. At the same time, it is
critical that the machine is not run with broken parts, as this could
result in breakdowns and costly maintenance breaks.

2.7.1 Potential within Data driven services

As shown in figure 2.2 the number of Tetra Pak machines currently
installed in the world is absolutely huge. Much of the data generated
in the machines is already saved and stored, but much of it is not used
for any specific purpose, or at least not used to its fullest potential.
In many applications (as in this project) additional hardware has to
be installed to be able to gather very detailed data. But since most of
Tetra Paks customers are heavily automated, much of the infrastructure
for collecting data is already in place. This means that there is a large
potential to use analytics, even on the data that already exists. There
are probably interesting information and patterns waiting to be found
on Tetra Paks servers.

2.7.2 Knifes

In the packaging procedure, a paper tube is filled with liquid and then
sealed and cut off from the tube - each cut produces one package. The
cut is performed by a toothed knife that naturally will wear over time.
When cutting, the machine applies a certain amount of pressure on the
knife. Over time, as the knife gets more dull, more pressure is needed
to push the knife through the material and and once a certain pres-
sure threshold is passed, the knife is considered worn out and should
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ideally be changed. This explanation is quite simplified, but captures
the essence. In reality there is detailed analysis of how the shape of a
plotted pressure pulse change certain characteristics over time. Knifes
are replaced approximately every 1000th production hour, but the ac-
tual wear will vary depending on what is produced. Knives are quite
simple and have relatively short run-to-failure cycles, meaning that it’s
easy to gather relevant data fairly quickly. However, questions can be
raised about how valuable it is to know exactly when knives should be
changed, since a worn out knife probably wont cause a long maintenance
period.

2.7.3 Servo Motors

Another example is servo motors, which differs quite a lot from knifes.
Servo motors are more expensive and takes more work to replace. While
you can look at or touch a knife to determine if it is sharp, it’s more
difficult to tell the health of a servo motor since it’s completely en-
capsulated. Tetra Pak have done experiments where vibrations of the
motor are measured, and then tried to find degradation patterns in the
vibration data. It is more difficult to gather data since the lifetime of
servo motors are longer, thus longer measurement periods are needed
to get complete run-to-failure time series. However, an unexpected
breakdown of a servo motor can result in very costly production stops
and long maintenance times, so being able to avoid a breakdown or
at least being able to have a planned maintenance could be a serious
economic benefit.

2.8 The Inductor

The central physical machine part in this thesis is the inductor, which
is the sealing component referred to in the title. There is much written
about inductors, but this is not the place to go into detail about it.
However, a short introduction to what we’re working with is in place.
In this section a brief introduction will be given on the inductor and
the induction heating method for sealing packages. There are many dif-
ferent ways to manufacture an inductor, and Tetra Pak is world leading
in inductors used for sealing.

2.8.1 Anatomy of the inductor

The inductor consists of a number of different parts, an overview of
the inductor type analyzed in this thesis is shown in figure 2.8. Part
are as follows: 1 - Copper coil with one winding, 2 - Magnetic Flux
Concentrators, 3 - Plastic core that holds everything together during
moulding of the body and 4 - Nipples for the screws that attaches
the inductor to the machine. When assembled, the inductor looks like
in figure 2.9; first assembled with the plastic core holding the pieces
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in place (front), and then the whole piece is moulded in plastic body
(back).

Figure 2.8: Anatomy of an inductor - individual parts.

Figure 2.9: Anatomy of an inductor - assembled and moulded.

2.8.2 Induction heating as sealing method

The principle of induction heating is relatively simple and it is widely
used in various industrial manufacturing applications. See figure 2.10
for an overview. By running a high frequency current through a coil,
a magnetic field is produced around the coil. This magnetic field will
induce a current in the nearby metal. Since the metal is resistive, it
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will be heated. A big advantage of the process is that it requires no
physical contact between the coil and the metal to be heated.[3].

Figure 2.10: Working principle of induction heating

In Tetra Paks case the technique is used slightly different than what
is shown in figure 2.10, however the same principle is used. That is, a
current is run through a thick copper wire like the one in figure 2.8,
which can be thought of as coil with only one winding. Instead of
placing the material to be heated inside the coil, it is placed on top
of it. A cross-section of the setup is shown in figure 2.11. The upper
part and the lower part are moved together and the paper is tightly
pressed between the rubber and the coil. The purpose of the ridge is to
get a smaller pressing area and thereby a more distinct creasing of the
paper, and the Magnetic Flux Concentrator (MFC) will concentrate
the magnetic field upwards. A magnetic field is produced around the
coil, just like with a regular inductor, and the package will be heated
since there is a small amount of metal in it. The heating of the metal
melts the plastic, and the package is sealed in a glue-like manner. Note
that the inductor makes two sealings every time it moves down - the
top sealing of one package and the bottom sealing of the next, with a
cut in between. Two sealings and one cut equals one package. There
are usually more than one inductor/knife-module in each machine. The
data used in this thesis is from a machine equipped with two sealing
modules that take turns sealing the package. However, there are cases
where there are as many as fourteen sealing modules per machine.

2.8.3 Degeneration of the inductor

The inductors are used constantly in the machine, and is subjected to
quite a metal-unfriendly environment. Many of beverages and foods
that are packaged are acidic to some degree, for example fruit juices.
The acid causes corrosion in the metal coil. In figure 2.12 an example is
shown of what a worn inductor looks like. Apart from corrosion there is
also the mechanical wear caused by contact with the packaging material
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Figure 2.11: Cross section of a sealing setup.

under heavy mechanical pressure.
Wearing of spare parts is a natural problem when one is dealing

with large industry machines. There is however one aspect regarding
packages that is extra problematic. There is no clear way of telling
when an inductor is worn out. The wear, and thus the changing of
characteristics of the inductor, happens slowly over a long period of
time. The time period naturally varies, but it is usually months between
replacements. An inductor could go from making sealings that are
100% to very slowly drift to 99%. A 99% sealing might not show until
weeks later, perhaps with a small leak during transports or similar. The
problem is that it is not directly evident that the inductor performs
badly - it will show much later.

Now most spare parts, including inductors, are changed with prede-
fined time intervals, regardless of the state of the part. This is far from
optimal, and especially so for inductors. Depending on what product is
produced in the machine, there will be different levels of acid, and thus
different levels of corrosion on the coil. Two inductors that has both run
for 1000 hours can be in very different shape. Apart from the product
produced, the weather and climate in and around the machine will also
affect how parts are worn, further adding to the complexity. Because of
this complexity, condition monitoring and condition based maintenance
is potentially a very powerful method for determining when inductors
should be replaced.
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Figure 2.12: Worn inductor.
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3.1 Data collection setup and procedure

In all Tetra Pak’s machines worldwide, there are lots of data generated
and collected. The data is mostly from the control unit (PLC) and
concerns input and output signals to the control unit. The data is not
collected with high resolution and does not have the detail needed for
deep analysis like what we’re trying to do in this project. To collect the
right kind of data, a few machines have been selected and equipped with
special sensors to collect high resolution data. An overview of the data
collection setup is shown in figure 3.1. Note that this is only a schematic
figure that shows the most important parts. In reality there are more
components, but these are not necessary to get a general understanding
of the process, which is the goal here.

Figure 3.1: Data collection setup.

Firstly, there is a control unit (PLC) that controls what happens
in the machine and the inductor. The control unit will send square
pulses to the power generator. Examples of signals are power level and
on/off. The power generator sends a low-current, high-voltage signal
through a coaxial cable into a transformer. The transformer (trafo)
transforms the signal into a low-voltage, high-current signal. Since the
transformer cannot be located very close to the inductor, a "busbar"

17
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is needed to transport the current. The busbar is a thick copper part
that can handle the high current. The EVO board, which is the extra
data collection unit, samples data at a high frequency; around 1 kHz.
This is equivalent to 1 measure per millisecond.

There is a predefined procedure for collecting data. First the ma-
chine is run for 30 minutes to ensure that measurements are done in
continuous production to not capture any effects of having recently
started the machine. Once in continuous production, a burst of 20 seal-
ings is taken every 20 minutes. This means that the data that captured
is not everything that happens, but rather snapshots of it. This is how-
ever considered to be more than enough since the wear and change of
components from one hour to another is negligible. What’s interesting
is what happens during days, weeks and months.

3.2 Raw inductor data

When the thesis project was started, the high resolution data collec-
tion setup had been up and running for about 6 months on 3 ma-
chines in a plant in Italy. The data was available on one of Tetra Pak’s
online remote storage locations. There was one folder per machine,
each with thousands of files - one file for each day and data source
point. A typical file name would be something like "RightEvoVoltage-
Out_20160123_000100000.csv". The variable name is then "RightEvo-
VoltageOut" where "Right" means that is is the right of the two induc-
tors in the machine. "Evo" refers to the data collection unit from figure
3.1, and "VoltageOut" is what the variable is measuring. "20160123"
refers to date 2016-01-23 and is the date that the data was collected.
The meaning of the last code "000100000" is unknown and was not
used.

As evident in the file name, the files are of the type csv; comma-
separated values. A sample of the contents of a typical file is displayed
in the first part of table 3.1. Looking closely, one can see that the data
is three columns separated by commas and splitting them gives the
table in the lower part of figure 3.1. The first column is an event-code
generated in the machine, referring to the current event taking place.
This could be something like "Normal production" or "Stop due to x".
However, the event code is not used in the analysis. The second column
is a time-stamp string. Worth noting is that is is very exact, measuring
seconds with 5 decimals. Also, the time-stamp is in text-string format,
which we will come back to later. The third and last column is the
actual measurement, in this case "Voltage Out", measured in Volts.

As previously mentioned, Evo refers to the computer unit used to
collect data from the inductor. In one machine there are two induc-
tors working simultaneously, taking turns sealing a package. The two
inductors each have an Evo-board; "LeftEvo" and "RightEvo". Each
Evo measures 13 different variables, of which an overview is displayed
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Table 3.1: Four example rows of raw data from a file.

113931640,2016-01-05T05:41:23.47568 +01:00,255.4
113931640,2016-01-05T05:41:23.47568 +01:00,187.9
113931640,2016-01-05T05:41:23.47568 +01:00,114.7
113931640,2016-01-05T05:41:23.47569 +01:00,68.8
...

113931640 2016-01-05T05:41:23.47568 +01:00 255.4
113931640 2016-01-05T05:41:23.47568 +01:00 187.9
113931640 2016-01-05T05:41:23.47568 +01:00 114.7
113931640 2016-01-05T05:41:23.47569 +01:00 68.8
... ... ...

in table 3.2. Regarding the setup with left and right, they are ex-
pected to behave very similarly since they always operate on the same
material and as a rule of thumb they are always replaced in the same
maintenance period. They are however regarded as two different data
sets.

3.3 Data wrangling and importing to MATLAB

As mentioned, raw data was available as csv-files in folders in an online
data storage location. 3 machines, 26 variables and around 150 days
means that there were more than 10 000 files available, each with av-
erage of around 400 000 rows. This is a huge amount of data, and far
too much to be handled efficiently in this format, even with automated
scripts. To make the data more quickly available I decided to convert it
from csv to matlab format, which is much more effective storage-wise
and much faster to run in matlab than reading csv-files one at a time.
This seems like a very easy task, and I myself expected something like
writing one line of code convertcsv2mat(’inputFile.csv’) - this was not
the case. There had already been some work done in this area at Tetra
Pak, so I could use some algorithms for data conversion that were al-
ready written. Usually the performance of converting algorithms like
this is not crucial, since the import only has to be done once. The
measurements from the machines come once a day, so if it takes a few
minutes per file to convert, it is not a problem. But in this case I started
from zero and had more than 10 000 files.

In matlab, there are tools ready for importing csv files, but they are
designed for numerical values, and the comma-separated line was stored
as text, meaning that the text needed to be parsed to numerical val-
ues before they could be used. The part with numerical measurement
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Table 3.2: Inductor measurements

Measure Variable name - left Variable name - right
Current LeftEvoCurrentOut RightEvoCurrentOut
Delta power LeftEvoDeltaPower RightEvoDeltaPower
Frequency LeftEvoFrequency RightEvoFrequency
Impedance LeftEvoImpedanceOut RightEvoImpedanceOut
Phase LeftEvoPhaseOut RightEvoPhaseOut
Power output LeftEvoPowerOutput RightEvoPowerOutput
Power set LeftEvoPowerSet RightEvoPowerSet
Timer LeftEvoTimer RightEvoTimer
Tpih channel select LeftEvoTpihChannelSelect RightEvoTpihChannelSelect
Tpih digital 24 LeftEvoTpihDigital24 RightEvoTpihDigital24
Tpih error LeftEvoTpihError RightEvoTpihError
Tpih vmn LeftEvoTpihVmn RightEvoTpihVmn
Voltage LeftEvoVoltageOut RightEvoVoltageOut

values was solved relatively easily. The biggest problem was the times-
tamp string (looking like ’2016-01-05T05:41:23.47569 +01:00’). Rather
than working with a string, a time or a date can be represented as the
number of days since January 0, year 0. As an example, the year 2016 is
approximately 735 000 days after year 0. By using decimals, hours and
minutes can be added. 0,5 would mean 12 hours etc. The numerical
value 731204.5 corresponds to 2001-12-19 12:00. Converting the data
with the scripts already available averaged around 3 minutes per file.
As said, this is okay if run with one file a day, but with 10 000 files I
was looking at 30 000 minutes or around 3 weeks in effective running
time, which obviously was not feasible. Matlab in general is great at
handling large amounts of data structured in vectors and matrices, but
in the case of date conversion, the algorithms will be trickier because
of all the special cases there is with time and date. This means that in
the end, there has to be one function call for each date to be converted.

I set out to write new matlab scripts with higher performance. Some
immediate improvements were made with minor adjustments and con-
solidation of unnecessary loops and such. Conversion times were re-
duced, but still averaged over 2 minutes per file. To figure out what
part of the script took the longest time to execute a tool Matlab tool
called Profile Viewer or profiler was used. The profiler gives a detailed
overview of how much time is spent in each function and subfunction.
The tool is especially helpful when several calls and subcalls to different
functions are made. An example of how the tool is used is displayed in
figure 3.2. csv2mat is the main function which in turn make different
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subcalls. The darker blue color indicates self time, meaning time that
is spent in the own function. The lighter blue indicates time spent in
other functions. This is then broken down in smaller and smaller parts.
A large chunk of dark blue indicates a time-consuming activity in that
specific function. With this knowledge it is easier to pinpoint what part
of the code that needs to be improved.

Figure 3.2: Profile Viewer example.

With insight from the profiler it was concluded that most of the
time, almost 90%, was used on overhead instead of the actual date
conversion, which was the real problem at hand. Looking for further
performance improvement the scripts were rewritten to make all calls
and handle all data in batches. This means that instead of looping
through 100 values and sending each as a function parameter, an array
of 100 values is sent at once. The change made much sense, since
Matlab is very good handling arrays and matrices. The change made
a significant difference and time was cut drastically to averaging 25-30
seconds. While the time difference was massive, 10 000 calls averaging
30 seconds still equals around 3.5 days.

In a final attempt to reduce conversion time, the output results of
the Profile Viewer were reviewed once again, and it was concluded that
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95% of the time was now spent doing date conversion. After some
research and reading in various programming forums I found an alter-
native way to convert time and date that used a function written in the
programming language C. The function was incredibly fast, but more
difficult to work with. This meant that once again most of the code
had to be rewritten, but the results were conversion times averaging 2-
3 seconds per file. Comparing with the original script the time was cut
with more than 98% and allowed running the script on all 10 000+ files
in a matter of hours. An overview of the script progress is displayed in
figure 3.3. Figure 3.4 shows time per file when running conversion of
typical data files with the final version.

Figure 3.3: Performance of data conversion scripts.
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Figure 3.4: Execution times when converting csv to matlab format.



“output” — 2016/10/10 — 18:55 — page 23 — #35

Method 23

3.4 Data preparation and feature engineering

With all the data now imported into matlab, and readily available in a
format that allowed manipulation of huge amounts of data very quickly,
it was time to actually look at the data. Despite being able to handle
the data efficiently it was still such large amounts that it was difficult to
get a grip on it. With this amount of data there is almost no case where
anything can be done manually. Every little thing has to be written in
an automated script looping over hundreds of different cases.

3.4.1 Selecting relevant data

At this point I wanted to narrow down the amount of data and look
at the most relevant points. Looking at the table in 3.2 there are 13
measurements for each side in the machine. I found this to be too many
to experiment with simultaneously. When building prediction models
one should strive to make them as simple as possible, so there is no
need to include all the data you have if it doesn’t offer any significant
advantage. The variables starting with Tpih stands for Tetra Pak In-
duction Heating and has to do with inputs and other things that cannot
be connected to the state of the inductor. They were considered not to
hold any valuable information and not analyzed further. This leaves us
9 variables to work with and analyze. These 9 variables were plotted to
get a feeling of what they looked like, the result is displayed in figure
3.5.

• CurrentOut - Current flowing through the inductor.

• DeltaPower - The difference between PowerOut and PowerSet.

• Frequency - Frequency of the current/voltage through the inductor,
approximately 635 kHz.

• ImpedanceOut - Impedance of the system.

• PhaseOut - Phase between current and voltage.

• PowerOutput - Total power output in the inductor.

• PowerSet - Input parameter that is set by the operators of the ma-
chine. Sets what the power should be.

• Timer - The clock by witch the PLC operates.

• VoltageOut - Voltage measured in the inductor.

To select what data to work further with, the data characteristics
were discussed with project supervisor Daniel Sandberg. Daniel has
worked with inductors for many years and has extensive knowledge of
how inductors behave. This type of domain knowledge is absolutely
crucial when selecting data to work with in prediction models. Looking
at the plots in figure 3.5 and discussing how inductors are worn we



“output” — 2016/10/10 — 18:55 — page 24 — #36

24 Method

0 500 1000

0

2

4

6

CurrentOut

0 500 1000

0

1000

2000

3000

DeltaPower

0 500 1000

0

200

400

600

Frequency

0 500 1000

30

40

50

60

70

ImpedanceOut

0 500 1000

0

20

40

60

80

PhaseOut

0 500 1000

0

500

1000

1500

PowerOutput

0 500 1000

1250

1260

1270

1280

PowerSet

0 500 1000

2.4

2.5

2.6

2.7
×10

4 Timer

0 500 1000

0

100

200

300

VoltageOut

Figure 3.5: Characteristics of 9 different variables.

concluded that the most relevant and non-redundant data would be
Phase, Frequency and Impedance.

The impedance is quite obvious since it depends on the physical
formation of the inductor. If the part is damaged (perhaps with a dent
in the copper) or some copper has corroded away, the impedance will
be different. This change should be able to be discovered. Regarding
frequency, the system is designed for having impedance of 50 ohms and
a phase degree of 0 degrees. At each sealing done, the frequency sweeps
over a certain interval to find a value where the phase is as close to 0
as possible. If the inductor is damaged in some way, the impedance
might have changed and therefore the frequency sweep will be slightly
different. This can hopefully be detected and analyzed. Phase is closely
connected to impedance and frequency and therefore possibly holds
interesting information.

3.4.2 Detailed data characteristics

Having narrowed it down to phase, impedance and frequency it was time
to look more closely at the characteristics of the data. For impedance,
one days data can be seen in figure 3.6 part 1. This is a typical day
that contains around 400 000 measurements. Zooming in on the data in
part 2 and part 3 of the same figure, we can see that the data behaves
like repeated pulses. One pulse is interpreted as one sealing-cycle in



“output” — 2016/10/10 — 18:55 — page 25 — #37

Method 25

the inductor, which actually creates 2 sealings - bottom of one package
and top of the next. Looking further we can see that one typical day
like this contains around 800 pulses. Part 2 of figure 3.6 shows that
there are pauses between pulses and in part 3 we see approximately one
complete impedance pulse cycle. After discussing the characteristics
with the project supervisor I concluded that only the actual pulse holds
valid information, the time between pulses is just noise and not really
measuring anything real.

As expected, the other variables also behave like pulses. This can
be seen in figures 3.7 and 3.8. It should be noted that phase starts high
and drops down during the sealing, while impedance and frequency
start low and rises during the sealing. This has to be handled when
writing scripts to extract pulses.
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Figure 3.6: Characteristics of raw phase data.

3.4.3 Feature engineering

A feature can be any kind data that is fed to a predictive model. The
following list contains features commonly used when building predictive
models:

• Raw data - data as it is received from the sensor.

• Moving average - the moving average of the data with different values
on N.
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Figure 3.7: Characteristics of raw impedance data.
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1) One production day of frequency pulses
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Figure 3.8: Characteristics of raw frequency data.
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• daily mean - average value of one days measurements.

• daily median - median value of one days measurements.

• Max - maximum value during a certain period.

• Min - minimum value during a certain period.

• Standard deviation - s.d. of one days measurements.

• etc - ...

The point is that a feature really can be anything derived from raw
data. Since the raw data is imported into matlab and in a convenient
format to handle, there is nothing stopping us from starting to build
models right away. One could very well feed a predictive model with
all the available data that exists and see if it can make useful pre-
dictions. There are certainly real-world applications where this could
work. However, it does not seem likely that this would work in the
case of inductors, since there is such a vast amount of data, and the
data contains a lot of noise. In the feature engineering process it is
useful to have someone with domain knowledge to try to understand
how the data most probably will behave. Even narrowing down from
13 variables to 3 could be considered feature engineering.

Daily averages

The first feature that was tried out was daily average of all collected
data for a certain variable. This means just taking the average value of
around 400 000 values from one day. An example of what it looked like
is displayed in 3.9. There seems to be some kind of trend going on, but
it looks hard to look at the graph and point out where the inductor is
new and fresh, and how it degenerates over time.

Similar plots were made with impedance and frequency. An attempt
to improve the feature was made by excluding values above or below a
certain interval. Looking at the pulses, one can see that even though
they might trend up or down as the inductor wears, they will typically
stay within the same intervals. For example, a phase pulse seems to
stay within degrees 0 to 50. Anything outside that interval is probably
noise or irrelevant data. In this way, a feature was produced by taking
the daily averages of all values within the "reasonable interval". The
results did not show any significant change though.

Daily standard deviation

Similarly to daily averages, a feature was made out of daily standard
deviations. The idea behind this is that a new and fresh inductor should
be very exact and consistent in its behaviour, and as it wears, it will
behave more randomly. Looking at the graph in figure 3.10 there seems
to be no significant trend to work with. This does not necessarily mean
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Figure 3.9: Daily averages of phase time series.
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that daily standard deviation is not interesting, but perhaps that there
is too much noise in the data.
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Figure 3.10: Daily standard deviation of phase time series.

Extracting pulses

In an attempt to reduce the amount of noise present in the data I
chose to try to extract only the pulses and leave out all the noise in
between. I wrote several scripts in several versions to accomplish this
pulse extraction, which was much trickier than expected. Each pulse
was to be detected and then saved in some data structure to be able to
easily compare pulses to each other.

In the first version I simply used a treshold for detecting a pulse.
The idea is displayed in figure 3.11. If the value goes below the threshold
value 40, this marks the beginning of a pulse. If it’s over 40 again, it
marks the end. This approach is simple but since the pulses differ some
in length, and there are quite some noise present, the resulting dataset
will contain a lot of unwanted things.

Another approach that was tried was to look at the derivative. This
method is displayed in figure 3.12. The idea was that a beginning of a
pulse would produce a more distinct derivative compared to noise. This
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Figure 3.11: Pulse detection with threshold.

definitely worked better than the threshold version. However there was
still too much unwanted things in the resulting dataset of pulses.

After some consultation with a few experienced engineers as well
as my supervisor I wrote a script that used the signal from the PLC
(control unit from figure 3.1). This way is more advanced to code since
it uses different data sources rather than just looking at one time series
of raw data. The signal from the PLC is a regular square wave that has
either 0 or 1 as a value. 1 indicates that the left inductor is running,
and 0 that the right is running. Using this I was able to extract pulses
very efficiently and with good precision. An example is displayed in
the left part of figure 3.13. The plot shows 5 days (approximately 1500
pulses) of impedance pulses plotted on top of each other. Most of them
stay in the same interval but there are quite a few outliers. While it
is expected that the pulses will drift up or down as the inductor wear,
the change happens over a very long period of time, so within a certain
day there should be very little difference that has to do with wear.

To address this some code was added to clean the data from pulses
that were obviously way out. I had two strategies for this, both used
simultaneously in the final version of the script. The first thing i checked
was what happened in the middle part of the pulse. Excluding the first
and last 20 milliseconds of the pulse, the values should stay in a set
interval. If they are outside of this, the pulse is considered as noise
and deleted.The second check I made was to take the vector of the 200
values that make up the pulse and sum them. If it’s a clean pulse, this
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Figure 3.12: Pulse detection with derivative.

Figure 3.13: Impedance pulses before and after cleaning.
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sum should not differ much from previous sums. I compared the sum
of the current pulse to the average sum of the last 5. If it differed to
much, it was deleted. After implementing these two checks, I was able
to remove almost all noise while managing to keep almost all of the
actual clean pulses. The result is seen in the right part of figure 3.13.

At this point all pulses were cleaned and ready to be analyzed. I
wrote scripts to calculate daily averages at different times into the pulse.
An overview is shown in figure 3.14. Each day there were 5 averages
calculated: at 20, 60, 100, 140 and 180 ms into the pulse. The reason
I picked five different times is to catch trends that might appear more
clearly in a specific part of the pulse (if that should be the case).
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Figure 3.14: Phase pulse averages at different times in the pulse.

Next I plotted the 5 daily averages over a long period of time. The
result is displayed in figure 3.15. Finally there are some trends visible!
The red arrows indicates trends of the variables, exactly as predicted
from the beginning. The span of the red arrow indicates one inductor
going from new to worn out. This is referred to as one run-to-failure
cycle or just cycle. It should be noted that each cycle is different in
length and the amount of noise varies greatly. The figure shows data
from one side of one machine, and there were 3 machines which totals
6 time series like this. All showed similar tendencies with downward
trends but large variations in lengths and noise-intensity.

After great success in finding clear trends in the phase data, I re-
peated the procedure with impedance and frequency. That is; extract-
ing pulses, cleaning them from outliers, calculating daily averages at
different times into the pulse and plotting all the averages over a long
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Figure 3.15: Trend of daily averages of phase pulses at different
times into the pulse.

period of time. At this point I had 3 features - averages for phase,
impedance and frequency. I also added calculation of standard devia-
tion in the same way that I calculated averages. I had now derived the
following 6 features from the raw data:

• Phase - average.

• Phase - standard deviation.

• Impedance - average.

• Impedance - standard deviation.

• Frequency - average.

• Frequency - standard deviation.

For all of the above there were 5 different time series (as seen in
3.15), but since the trends seemed to be behave similarly regardless of
at what time in the pulse that was looked at I decided to only keep
the value from 60 ms when going forward and building the predictive
model.

3.5 Building prediction models in Microsoft Azure

Having engineered the features they were almost ready to be fed into a
predictive model in Microsoft Azure, but first I had to select relevant
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cycles. The goal is to teach an algorithm how run-to-failure cycles
behave. This way it should be able to predict how much is left until
failure, given data from any new cycle. To do this, the model must be
fed with clean run-to-failure cycles. Our time-series contained multiple
cycles at this point, so I had to select intervals from the data to clearly
indicate where a cycle ends and another begins. Looking at the figure
in 3.16 there are four different periods. The first part colored gray was
considered too short to be used, although this might not be true since
we actually only need run-to-failure, and not "new-to-failure". Cycle 1
and Cycle 2 are distinct cycles of fresh inductors running all the way
to failure. The last gray part can not be used since it is not run to
failure. Feeding this cycle to the predictive model would indicate that
the inductor failed at the end of the cycle, which is not true.

Figure 3.16: Phase trends pulse extraction.

Repeating the process for all time series (3 machines each with 2
sides each) I was able to extract 6 cycles. This seems like a small
amount considering 2 cycles were extracted from figure 3.16, but that
time series was the cleanest of all. The others were very noisy and some
even had data missing for long time periods for reasons unknown.

The final data-set that was imported into Azure is shown in table
3.3. RUL stands for Remaining Useful Life, measured in days. Note
that RUL is the Day count backwards. The other headings should be
self-explanatory. As mentioned there were 6 run-to-failure cycles, so
the first column ID has values from 1-6.
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Table 3.3: Finalized inductor feature data.

ID Day RUL PMean PStd IMean IStd FMean FStd
1 1 81 6.54 0.286 51.04 0.154 537.99 0.109
1 2 80 6.61 0.536 51.01 0.252 538.08 0.265
1 3 79 7.34 0.374 50.56 0.207 537.74 0.249
... ... ... ... ... ... ... ... ...
1 79 3 2.87 0.708 51.54 0.185 538.52 0.337
1 80 2 3.46 0.398 51.59 0.157 538.31 0.179
1 81 1 2.69 0.300 51.22 0.204 537.96 0.132
2 1 115 3.92 0.279 51.14 0.749 538.45 0.126
2 2 114 4.21 0.593 51.04 0.235 538.48 0.193
2 3 113 4.48 0.353 51.05 0.151 538.35 0.188
... ... ... ... ... ... ... ... ...
2 113 3 1.82 0.663 49.05 0.289 536.75 0.198
2 114 2 2.80 0.778 49.22 0.316 536.59 0.220
2 115 1 1.78 0.259 49.23 0.561 536.94 0.299
... ... ... ... ... ... ... ... ...

3.5.1 Building the Predictive Model

At this point it was time to start building the model inside Azure.
Prior to this I had gone through a substantial amount of training by
using online tutorials and reading articles about how to build models
in Azure. Once features have been engineered and the data is cleaned
and ready as in 3.3 building a model does not take very long if you are
fairly familiar with Azure. The final look of the model is displayed in
3.17.

The dataset is imported in the first box, and some minor adjust-
ments are made in the following two. The "Split Data" module splits
the data into two sets; one for training and one for testing. It’s not
uncommon that you start with two completely different sets where one
is training and the other testing, but this was not the case here meaning
I had to split the data myself in some way. I started by using "Random
Split" and setting a coefficient of how much should end up in either
leg. For example, using a coefficient of 0.8 would randomly select 80%
of the rows to one output port and 20% to the other. This way, 80%
of the data is used for training the model, and the remaining 20% is
used for testing to see if the model could predict anything when shown
data that it had not trained on. This sounds like good approach, but
it’s hazardous. If 20% of the data is randomly selected rows that are
removed from the training data, it means that you could have a seem-
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Figure 3.17: Final version of Azure predictive model.
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ingly linear trend (as we do in this case) and remove a few points in the
middle of it. An attempt to demonstrate the problem with this made
in figure 3.18. On the left side, 10 data points are available and a line
is fitted to them. This illustrate fitting the model to the training data.
On the right side, 20% of the data points are removed. However, since
they were removed in the middle of a straight line it doesn’t matter
at all. The model will still fit the exact same line to the data. Or in
other words, the model will still get the same training. Unaware of this
problem I randomly removed data from the training set and later tested
the model on the removed data. This resulted in models that scored
extremely high - almost 95% accuracy on predictions, which seemed
like unreasonably high performance.

Figure 3.18: Hazardous way to split training/testing data.

Instead of using random split I removed 1 whole cycle from training
data and used as testing data. There were 6 cycles, so I made 6 versions
and changed which cycle was used for testing. This is much closer to the
real scenario where the model would be used on data from a completely
new cycle.

Moving on down past the split in the model in 3.17 the data is
sent to four different segments, each with a different type of model.
As described in the introduction there are different kinds of predictive
models, and I chose to work with regression models over classification
models.

• Decision Forest Regression

• Boosted Decision Tree Regression

• Linear Regression

• Neural Network Regression

The output of the predictive model, the variable that we are trying
to predict, is a so called "Response variable". In our case the response
variable is Remaining Useful Life, RUL, measured in days. This is
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specified in the "Train Model" box in Azure. The procedure does not
differ much if there is one model or many. After the model is trained,
it is scored using the testing data from the split. The last part in 3.17
are just some short scripts to tweak how results are presented.



“output” — 2016/10/10 — 18:55 — page 39 — #51

Chapter 4
Results

Azure generates a table of results when the predictive model is run. One
parameter is called Coefficient of Determination and can be viewed as
the overall performance of the model. The coefficient of determination
should be between 0 and 1 for a model that can make some kind of
predicitions. A score of 1 indicates a perfect model that make pre-
dictions 100% correctly. A negative value indicates that the model
performs worse than a horizontal line - in other words, the model is
completely useless. A model that should be implemented in a real
world scenario probably needs to have a score around 0.8 or higher.

The resulting coefficients of determination are displayed in table
4.1 and corresponding figure 4.1. The number on the X-axis indicates
which cycle was used for testing the model (and thus not included in
the training set). Sadly there seems to be no model that can make a
useful prediction given that it was trained with the data currently avail-
able. There is one case where the model looks valid; Neural Network
Regression cycle 2 scores 0.95, which is excellent. But since Neural
Network Regression performs poorly in all other cycles this can only
be regarded as pure luck.

Table 4.1: Coefficient of Determination

1 2 3 4 5 6
Decision Forest Regr. -0.4 -0.35 0.19 -5.17 0.36 0.56
Boosted Decision Tree Regr. -0.47 0.09 0.22 -2.74 0.05 0.69
Linear Regr. -10.31 -0.61 0.63 -13.42 -1.01 0.52
Neural Network Regr. -1.65 0.95 0.28 -57.42 -11.14 -1.81

Measurements of Mean Absolute Error (MAE) were included to
make it easier to grasp what the model result output indicates. Mean
Absolute Error is counted in days, so a MAE of 25 indicates that pre-
dictions were 25 days off on average, which is far from good enough.

39
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Figure 4.1: Prediction model results - coefficient of determination.

Table 4.2: Mean Absolute Error

1 2 3 4 5 6
Decision Forest Regr. 25.57 33.83 21.26 26.60 10.20 21.39
Boosted Decision Tree Regr. 25.51 28.08 20.60 20.18 14.95 17.81
Linear Regr. 22.50 40.90 10.63 41.49 22.54 20.48
Neural Network Regr. 37.89 6.62 23.10 83.80 60.26 57.19
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Figure 4.2: Prediction model results - mean absolute error.
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Chapter 5
Conclusions

One thing that might seem strange is that I have never seen the ma-
chines from which data has been collected. I do have a broad under-
standing of how the machines work, specifically the sealing procedure,
but I have no deep understanding of how they are run or how mainte-
nance is done. This is however part of the whole point of the project.
What Tetra Pak wants to accomplish is being able to get insights of
what is happening by only looking at the data and nothing else. Tra-
ditionally (and now) there has always been a technician looking at the
part and making the decision if the part needs to be changed or not.
The algorithm will have no knowledge about what the reality looks like,
it uses only data to make decisions.

5.1 Ecomonic aspects

The big question in this thesis have been "Is it possible to make mean-
ingful predictions about remaining useful life on spare parts?" and
specifically inductors used for sealing. Another big question that should
be addressed is: "Is it economically viable to conduct predictions on
a large scale?". There could easily be one additional thesis just to re-
search this question, but it should at least be discussed shortly here.
According to project supervisor Daniel Sandberg, the potential cus-
tomer value is divided into two main parts; value of prevention and
reduced cost. See figure 5.1 for an overview.

Value of prevention means that there are possible savings if machine
failures can be avoided to a larger extent. Tetra Pak does a lot of
aseptic packaging, meaning that the equipment and product is sterile
throughout the process, which significantly increases the time a product
will stay fresh. A loss of sterility means that a the product has to be
re-sterilized and the equipment cleaned and sterilized, a process that
takes hours to complete. Being able to avoid such events is obviously
a great benefit. Another scenario is an unexpected breakdown that
requires maintenance to get the machine up and running again.

Reduced cost refers to savings connected to spare parts. Good pre-
diction algorithms could mean that parts can be used for longer before

43
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being replaced, and thus fewer parts will be used altogether. Another
aspect is that if you know when a part is about to be worn out, it’s
easier to plan for maintenance periods.

Figure 5.1: Customer value segmentation.

Customer value is essential, but also essential is the fact that good
predictions have to be possible to achieve without a massive workload.
Figure 5.2 attempts to illustrate the issue. Going forward, Tetra Pak
have to find parts in the machine that are possible to analyze without
huge effort, but at the same time the potential winnings have to be large
enough. In this project with inductors, an issue was that the run-to-
failure cycles of an inductor are very long, implying that it takes a very
long time to even get an R&D department running with relevant data.
An option to speed up the process is to install measuring equipment
on more machines and in more plants, but this would also mean more
investment.

In other cases, such as knives, the cycles are shorter and it’s there-
fore much easier to acquire a sufficient amount of data. However, the
potential winnings might not be as large if the part is a smaller and
simpler one. Generally a more complex part of the machine is more
expensive and it would be very valuable to have predictions on, but it’s
probably harder to build a model for a complex part.

Having discussed the issue with my supervisor and drawn conclu-
sions of my own, I believe that the greatest value will be found in the
"Value of prevention" part of 5.1. Avoiding loss of sterility and machine
breakdowns essentially gives you several more production hours to op-
erate on, which is a huge benefit in the long term. This idea is also
supported by Neale and Woodley in their article from 1975[10]. This
positive effect might be hard to measure though. If a plant has very
stable production with few breakdowns, it’s hard to point out exactly
what causes this stability. Predictive maintenance could play an impor-
tant role, but other procedures and systems will also have a part in the
overall stability of the plant.
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Figure 5.2: Prediction potential of parts.

5.2 Data quality

Data quality will always be a central issue when working with large
amounts of data and building prediction models like in this thesis project.

One significant thing is that the time-series most probably don’t
show real run-to-failure cycles, but rather run-to-change cycles. A fac-
tory running Tetra Paks equipments, or any other industry where the
cost of downtime is high will not let their parts run until they actu-
ally break. Naturally you’d have quite some safety margin and change
the part a little early. Also, in this case there were two inductors per
machine, so if the machine is stopped for maintenance you’d probably
change both even if one has some RUL left. The cost of "waste of RUL"
is probably small compared to what it would cost to make an additional
maintenance break, or worse - having the machine break down. These
cases cause problems since the data that is collected is not really the
run-to-failure cycles that you want for building models. On the other
hand, if the predictive model is still in proof-of-concept phase it does
not matter so much if parts are replaces a few weeks early, the main
characteristics of the data will still be the same.

Another aspect is that the inductors are probably not identical and
therefore will degenerate at slightly different paces. However, the dif-
ference between spare parts is considered to be negligible and has not
been taken into account. An educated guess is that the large variations
in the time series do not stem from different manufacturing quality of
the parts.

By looking at the data it is not always completely clear when a
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change has been made. Most of the time you can clearly tell that
the graph has trended downwards and then made a significant jump
upwards, but it’s hard to be certain since there is quite a lot of noise.
Changes of equipment is recorded in a separate database, but the input
to this database is done manually by technicians, and often times with
some days delay. Sometimes the maintenance is done during a longer
period, meaning that the date recorded in the database might not be the
exact date that the inductor was replaced. These change dates were in
fact plotted together with the data, but proved to not be exact enough
to be trusted. Which is why change dates was determined manually by
looking at significant jumps in the data.

5.3 Algorithms and working with data

The primary tool for working with data has been Matlab, in which I
have written scripts and functions. I have also used quite a lot of excel
with smaller amounts of data and when plotting. Regarding matlab,
I decided very early on to write as many functions and automated
scripts as I possibly could, and thus keep manual work to a minimum.
I have also tried not to hard-code anything, but rather use functions
and dynamic inputs. This was absolutely necessary since the amount of
files and data was so large. Approximately 3 machines, 26 data points
and around 150-200 files is well over 10 000 files that all have to be
handled. It is obvious that one should write scripts for each file (1 file
= 1 day of 1 variable), which is also easy enough to do. It’s definitely
harder to write one script per machine, using functions that call other
functions in multiple layers in a cascade-like manner. Where possible,
I have always made it so that the input to a script is the highest level
possible, which often is the machine name. This means that I would call
the function specifying with for example "M40" and then it would make
cascading calls ending up in hundreds or even thousands of sub-calls to
handle all the data of that machine.

A common scenario is that I started to do something manually in
matlab to see if the idea would work. Then the code was expanded
and rewritten to be more general. Many times I ended up spending
hours developing intelligent scripts to perform very simple tasks that
I could’ve solved manually in minutes. However, this habit of always
automating things greatly paid off in the long run since all scripts could
be re-used by just changing the input. On the other hand this means
that I have spent hours automating things that turned out to be useless
or only needed that one time, effectively wasting hours writing code that
is never really used. A quick count showed that I have written well
over 2000 rows of matlab code. Consistently going for the automation
approach also means that you constantly practice it.

Another challenge was to manage the library of files and folders in
a structured way. Since the run-times were sometimes very long, an
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important issue to address was to not re-do work that had already been
completed. To accomplish this, many different checks were written in
the code to skip files already imported for example. A lot of time was
also spent handling errors and bugs to make sure that the program or
even the computer did not crash in the middle of executing code for
many hours. There were many times when the computer was left to
run overnight, but due to an error it had crashed after only an hour or
so, wasting valuable hours.

I thought the thesis was going to be much more of building model
than wrangling data back and forth. Almost nothing of the data was
used in its raw format, but had to be aggregated. The skill of actually
working with data is at least as important, if not more important, than
deep knowledge of how the statistical models work. I sometimes found
the amount of data a bit overwhelming, and it was not always clear
where to start with a problem. For example, writing loops, should you
sort the data per day? per machine? per variable? I believe it’s very
useful to have some experience in just how to structure data, making it
easier to get an overview of what’s going on. For example, if I were to
plot something, let’s say a variable over time, it could easily result in
50+ plots since there had to be one for each machine, each side of the
machine etc. Many of the steps in the project are not very advanced if
faced one at a time, but doing it all together made it complex.

5.4 Working in Azure

Working with Azure was more difficult than I expected it to be. The
environment is developed so that someone without much coding expe-
rience or statistical knowledge can jump right in and start build various
analytics solutions. The tool is definitely very helpful, but it still takes
time to get started. There are online courses and tutorials for learn-
ing, but many are only of average quality and not the great learning
resource that you look for. The threshold for Azure was quite high, but
once the main components and work flow are understood, a lot can be
accomplished in short time. I did almost all data wrangling in matlab
instead of Azure, mostly because I already had good knowledge of mat-
lab. The advantage of this is that things can be run quicker on a local
machine than in the cloud as Azure does, on the other hand it would
be beneficial to have everything in one place. If this is to be done on a
larger scale it is definitely better to keep everything in one place rather
than have many different steps that have to be handled manually. As
with everything else in this project, it would be significantly easier to
do things a second time, being able to focus on the real problems in-
stead of getting stuck on small things because it’s the first time you’re
using Azure.
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5.5 Building the predictive model

The question that is the base for this thesis is: "Given historical data
from sealing inductors in a Tetra Pak filling machine, can we predict
the remaining useful life of a inductor currently running?". The answer
is: maybe.

As can be seen in the results section and for example figure 4.1 the
predictive models that were built in this thesis can not predict RUL
with any kind of precision given the current data. The coefficient of
determination (COD) should be between 0 and 1 for an algorithm that
has any kind of predictive capability. A negative COD means that the
algorithm performs worse than a horizontal line, which is completely
useless. A score of -1 indicates a perfect inverse correlation. For an
industry application the COD probably needs to be well over 0.5, and
perhaps as high as 0.9. There is no clear number that defines a good
model, it depends on the circumstances. Algorithm precision was dis-
cussed with my supervisor, and according to him, you must be able to
make predictions that are correct within a few, maybe 2-4% of a parts
lifetime to be of any real value to Tetra Paks customers.

As shown in plots, for example figure 3.15 there are clear trends
to be observed. This speaks for the fact that it should be possible to
build predictive models, but it’s hard to speculate about how effective
these models can become. From all the data collected and used in
this thesis I was only able to extract 6 complete pulses, but studying
comparable examples from other predictive maintenance solutions there
would typically be more than 100 cycles used for training. How much
data that is needed to make useful predictions depends on a few different
factors. Firstly there is the quality of data. For example, are there
gaps where no data was collected? Are there deviations in the data
that stems from some unexpected operator input or similar? Secondly,
what is the characteristics of the data? Are the cycles the same length?
Are there large variations and a lot of noise or does the data look
"clean"? Thirdly there is the question of how the algorithm output is
to be used. If a faulty prediction would result in a serious breakdown of
the machine, an algorithm might have to be correct within 2%. On the
other hand, if the goal us just to consume fewer spare parts, it might
be useful for the customer as long as it’s within 10-15%. The predictive
models used in this thesis could very well prove useful and accurate
enough if they were fed with more data.

The process used to develop the predictive model can be reused with
pretty much any amount of data, so as more and more data is collected,
it can just be fed into the model, and the accuracy should improve over
time.

There is a question to be raised about the features that were used.
Most of the available data was not used in the end. There could be
valuable information hidden in the data that I didn’t find. Had there
been more time I could’ve built a model using all the different measure-
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ments. However, it is not certain that the results would’ve been better,
and even if they were, the difference might not have been big enough
to warrant all the extra work. According to Tetra Pak statistician Klas
Bogsjö[7] one should always start by building the most simple model.
In this case the simplest thing would be linear regression. After that,
more advanced parts can be added, but only if they contribute signif-
icantly to better predictions. In the long term it’s probably unwise
to develop very advanced models that few people can understand and
maintain. According to [12] good data beats a good algorithm. You
could build the most advanced and sophisticated model ever, but if the
data is not good enough there is only so much the model can achieve.

A general problem when working with statistics and predictions is
that it’s hard to know whether you are right or not. Using tools such as
Azure to help you means that regardless of how you build your model,
you will almost always get some output number as a result. Then the
question is if the number is useful or not. The problem was briefly
discussed earlier in the report and shown in figure 3.18. One have to
be very careful not to build models that is trained and tested on the
same datasets, i.e. overfitted.
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Chapter 6
Further work and studies

There is a lot that can be done going forward. The work in this thesis
could be expanded by adding more features to the model and see if
the results improve. The predictive models I built were all regression
models, meaning they tried predict exactly in how many days the part
will break. An alternative is to work with classification, either binary
classification or multi-class classification. According to the project su-
pervisor, binary classification stating whether the part will fail within
10-15 days could be relevant. Once there is a working model the next
step is to implement it in some web service that can be used by a mobile
app for example. If the model is built in Azure this very easy to do,
basically clicking a button to "publish" the model as an web API that
can be called.

The existing predictive model can be tweaked endlessly, but it wont
matter if it’s not fed with more data. Since analytics is such a hot
topic it will only get easier to do interesting things with data. Azure
is a great example of getting analytics to the masses, but there are of
course many alternatives. I believe that the challenge will not be to
find interesting things to do with the data, but rather how to collect
and store lots and lots of it in a systematic way. In the case with
inductors, the data has to have quite high resolution which means a
lot of storage space is needed. It’s a difficult balance to keep, since
you don’t want to store huge amounts of high resolution data that
you don’t even know if you’re going to use. On the other hand, there
might be interesting relationships found in the data years from now,
and then you’ll be really happy that there is many years historical data
ready to work with. This is even more relevant when starting to look
at many different data sources and combining them to get something
useful out. For example, the inductor data might show some really
interesting trend when coupled with a database of production data.
According to proffessionals from the Data Science companies TeraData
and EvalueServe[9] there is a lot of value to be found building models
that use many different sources of data.

When selecting what parts to perform predictive maintenance on, I
think that Tetra Pak should look for parts with a short lifespan. Short
lifespans means that collecting a sufficient amount of run-to-failure cy-
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cles is possible without waiting years. This enables producing proof-
of-concept versions and getting key insights that are valuable going
forward with more complex parts. There is indeed a challenge in that
the most value might lie in the most complex parts with the longest
lifespans, but it’s important to at least make some progress and not
having to wait years for better data.
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