Aggregate and Workforce Planning (Huvudplanering)

Production and Inventory Control (MPS) MIO030

The main reference for this material is the book Factory Physics by W. Hopp and M.L Spearman, McGraw-Hill, 2001.

What is the Role of Aggregate Planning?

- Role of Aggregate Planning
 - Long-term planning function
 - Strategic preparation for tactical actions
- Aggregate Planning Issues

- Production Smoothing: inventory build-ahead
- Product Mix Planning: best use of resources
- Staffing: hiring, firing, training
- Procurement: supplier contracts for materials, components
- Sub-Contracting: capacity vendoring
- Marketing: promotional activities

Aggregate Planning is Long Term

Basic Aggregate Planning Situation

- **Problem:** plan production of single product over planning horizon.
- Motivation for Study:
 - mechanics and value of Linear Programming (LP) as a tool
 - intuition of production smoothing
- Inputs:
 - demand forecast (over planning horizon)
 - capacity constraints
 - unit profit
 - inventory carrying cost rate

A Simple Aggregate Planning Model (I)

Notation:

 $t = an index of the time periods, t = 1, \dots, \bar{t}$.

- d_t = demand in period t.
- c_t = capacity in period t.

r = unit profit (not including holding cost)

h = cost to hold one unit of inventory for one period.

 X_t = quantity produced during period t.

 S_t = quantity sold during period t.

 I_t = inventory at the end of period t.

A Simple Aggregate Planning Model (II)

Formulation summed over planning horizon $\max \sum_{t=1}^{\bar{t}} rS_t - hI_t$ sales revenue - holding cost

subject to

 $\begin{array}{lll} S_t \leq d_t & t = 1, \dots, \bar{t} & demand \\ X_t \leq c_t & t = 1, \dots, \bar{t} & capacity \\ I_t = I_{t-1} + X_t - S_t, \ t = 1, \dots, \bar{t} & inventory \ balance \\ X_t, S_t, I_t \geq 0 & t = 1, \dots, \bar{t} & non-negativity \end{array}$

Product Mix Planning (I)

- **Problem:** determine most profitable mix over planning horizon
- Motivation for Study:
 - linking marketing/promotion to logistics.
 - Bottleneck identification.
- Inputs:
 - demand forecast by product (family?); may be ranges
 - unit hour data
 - capacity constraints
 - unit profit by product
 - holding cost

Product Mix Planning (II)

Verbal Formulation

maximize profit

subject to:

production ≤ capacity, at all workstations
 in all periods
sales ≤ demand, for all products
 in all periods

Note: we will need some technical constraints to ensure that variables represent reality.

Product Mix Planning (III)

Notation

- i = an index of product, i = 1, ..., m
- j = an index of workstation, j = 1,...., n
- $t = an index of period, t = 1, \dots, \bar{t}$
- \overline{d}_{it} = maximum demand for product *i* in period *t*.
- \underline{d}_{it} = minimum sales allowed of product *i* in period *t*
- a_{ij} = time required on workstation *j* to produce one unit of product *i*.
- c_{jt} = capacity of workstation *j* in period *t*.
- r_i = net profit from one unit of product *i*
- h_i = cost to hold one unit of *i* for one period *t*.
- X_{it} = amount of product *i* produced in period *t*
- S_{it} = amount of product *i* sold in period *t*.
- I_{it} = inventory of product *i* at end of *t*.

Product Mix Planning (IV)

Mathematical Formulation

max
$$\sum_{t=1}^{t} \sum_{i=1}^{m} r_i S_{it} - h_i I_{it}$$
 (sales revenue - holding cost)

subject to

$$\underline{d}_{it} \leq S_{it} \leq \overline{d}_{it} \quad \text{for all } i,t \quad (demand)$$

$$\sum_{i=1}^{m} a_{ij} X_{it} \leq c_{jt} \quad \text{for all } j,t \quad (capacity)$$

$$I_{it} = I_{i t-1} + X_{it} - S_{it}, \text{ for all } i,t \quad (inventory \ balance)$$

$$X_{it}, S_{it}, I_{it} \geq 0 \quad \text{for all } i,t \quad (non-negativity)$$

A Product Mix Example (I)

Assumptions:

- two products, P and Q
- constant weekly demand, cost, capacity, etc.
- Objective: maximize weekly profit

Data:

Product	Ρ	Q
Selling price	\$90	\$100
Raw Material Cost	\$45	\$40
Max Weekly Sales	100	50
Minutes per unit on Workcenter A	15	10
Minutes per unit on Workcenter B	15	35
Minutes per unit on Workcenter C	15	5
Minutes per unit on Workcenter D	25	14

A Product Mix Example (II)

A Linear Programming (LP) Approach:

Formulation: max $45X_P + 60X_O - 5000$ subject to : $15X_P + 10X_O \le 2400$ $15X_P + 35X_O \le 2400$ $15X_P + 5X_O \le 2400$ $25X_P + 14X_O \le 2400$ **Solution:** Optimal Objective = \$557.94 $X_{p}^{*} = 75.79$ $X_{o}^{*} = 36.09$ **Net Weekly Profit** : Round solution down (still feasible) to: $X_P^* = 75$ $X_{O}^{*} = 36$

To get
$$$45 \times 75 + $60 \times 36 - $5,000 = $535.$$

Extensions to the Basic Product Mix Model (I)

Other Resource Constraints:

Notation:

- b_{ij} = units of resource *j* required per unit of product *i*
- k_{jt} = number of units of resource *j* available in period *t*
- X_{it} = amount of product *i* produced in period *t*

Constraint for Shared Resource *j*:
$$\sum_{i=1}^{m} b_{ij} X_{it} \le k_{jt}$$

Utilization Matching: Let *q* represent fraction of rated capacity we are willing to run on resource *j*.

$$\sum_{i=1}^{m} a_{ij} X_{it} \le qc_{jt} \text{ for all } j, t$$

Extensions to the Basic Product Mix Model (II)

.

Backorders:

- Substitute $I_{it} = I_{it}^+ I_{it}^-$
- Allow I_{it} to become positive or negative
- Penalize I_{it}^+ , I_{it}^- differently in objective if desired

$$max \sum_{t=1}^{\bar{t}} \left\{ \sum_{i=1}^{m} r_i S_{it} - h_i I_{it}^+ - \pi_i I_{it}^- \right\}$$

Overtime:

- Define O_{jt} as hours of OT used on resource *j* in period *t* and β_i the cost of one overtime hour in workstation j
- Add O_{jt} to c_{jt} in capacity constraint.

$$\sum_{i=l}^{m} a_{ij} X_{it} \leq c_{jt} + O_{jt} \text{ for all } j, t$$

• Penalize O_{jt} in objective if desired

$$max \sum_{t=1}^{\bar{t}} \left\{ \sum_{i=1}^{m} r_i S_{it} - h_i I_{it}^+ - \pi_i I_{it}^- - \sum_{j=1}^{n} \beta_j O_{jt} \right\}$$

Workforce Planning

- **Problem:** determine most profitable production and hiring/firing policy over planning horizon.
- Motivation for Study:
 - hiring/firing vs. overtime vs. Inventory Build tradeoff
 - iterative nature of optimization modeling.
- Inputs:
 - demand forecast (assume single product for simplicity)
 - unit hour data
 - labor content data
 - capacity constraints
 - hiring/ firing costs
 - overtime costs
 - holding costs
 - unit profit

A Workforce Planning Model (I)

·

Notation

- j = an index of workstation, j = 1, ..., n
- $t = an index of period, t = 1, \dots, \bar{t}$
- \overline{d}_t = maximum demand in period *t*.
- \underline{d}_t = minimum sales allowed in period t
- a_j = unit hours on workstation j
- b = number of man hours required to produce one unit.

$$c_{jt}$$
 = capacity of work center *j* in period *t*.

- r = net profit from one unit.
- $h = \cos t$ to hold one unit for one period t.
- $l = \cos t$ of regular time in dollars / man hour
- $l' = \cos t$ of overtime in dollars/man hour
- e = cost to increase workforce by one man hour
- e' = cost to decrease workforce by one man hour

A Workforce Planning Model (II)

.

Notation (cont.)

- X_t = amount produced in period t
- S_t = amount sold in period t
- I_t = inventory at end of t
- W_t = workforce period t in man hours of regular time
- $H_t = \text{increase (hires) in workforce from period } t 1$ to t in man-hours.
- F_t = decrease (fires) in workforce from period t -1 to t in man hours.
- O_t = overtime in period t in hours

Note, this model only considers a single product. Generalizations to m products are straightforward!

A Workforce Planning Model (III)

Formulation

$$\max \sum_{t=1}^{\bar{t}} \left\{ r S_{t} - h I_{t} - l W_{t} - l' O_{t} - e H_{t} - e' F_{t} \right\}$$

subject to

$$\begin{split} \underline{d}_{t} &\leq S_{t} \leq d_{t} & \text{for all } t \\ a_{j}X_{t} \leq c_{jt} & \text{for all } t \\ I_{t} &= I_{t-1} + X_{t} - S_{t}, & \text{for all } t \\ W_{t} &= W_{t-1} + H_{t} - F_{t} & \text{for all } t \\ bX_{t} &\leq W_{t} + O_{t} & \text{for all } t \\ X_{t}, S_{t}, I_{t}, O_{t}, W_{t}, H_{t}, F_{t} \geq 0 & \text{for all } t \end{split}$$

A Workforce Planning Example (I)

Problem Description

- 12 month planning horizon
- 168 hours per month
- 15 workers currently in system
- regular time labor at \$35 per hour
- overtime labor at \$52.50 per hour
- \$2,500 to hire and train new worker \$2,500/168=\$14.88 ≈ \$15/hour
- \$1,500 to lay off worker \$1,500/168=\$8.93 ≈ \$9/hour
- 12 hours labor per unit
- demand assumed met ($S_t = d_v$, so S_t variables are unnecessary)

A Workforce Planning Example (II)

- Solution:
 - LP optimal Solution: layoff 9.5 workers
 - Add constraint: $F_t = 0$
 - results in 48 hours/worker/week of overtime
 - Add constraint: $O_t \leq 0.2W_t$
 - Reasonable solution?

Aggregate Planning Conclusions

- No single AP model is right for every situation
- Simplicity promotes understanding
- Linear programming is a useful AP tool
- Robustness matters more than precision
- Formulation and Solution are *not* separate activities.

