Aggregate and Workforce Planning (Huvudplanering)

Production and Inventory Control (MPS) MIO030

What is the Role of Aggregate Planning?

- Role of Aggregate Planning
- Long-term planning function
- Strategic preparation for tactical actions
- Aggregate Planning Issues

- Production Smoothing: inventory build-ahead
- Product Mix Planning: best use of resources
- Staffing: hiring, firing, training
- Procurement: supplier contracts for materials, components
- Sub-Contracting: capacity vendoring
- Marketing: promotional activities

Aggregate Planning is Long Term

Basic Aggregate Planning Situation

- Problem: plan production of single product over planning horizon.
- Motivation for Study:
- mechanics and value of Linear Programming (LP) as a tool
- intuition of production smoothing
- Inputs:
- demand forecast (over planning horizon)
- capacity constraints
- unit profit
- inventory carrying cost rate

A Simple Aggregate Planning Model (I)

Notation:

$t=$ an index of the time periods, $t=1, \ldots \ldots ., \bar{t}$.
$d_{t}=$ demand in period t.
$c_{t}=$ capacity in period t.
$r=$ unit profit (not including holding cost)
$h=$ cost to hold one unit of inventory for one period.
$X_{t}=$ quantity produced during period t.
$S_{t}=$ quantity sold during period t.
$I_{t}=$ inventory at the end of period t.

A Simple Aggregate Planning Model (II)

Formulation

$$
\max \sum_{t=1}^{\bar{t}} r S_{t}-h I_{t} \quad \text { summed over planning horizon revenue - holding cost }
$$

subject to

$$
\begin{array}{rlrl}
S_{t} \leq d_{t} & t & =1, \ldots . . \bar{t} & \\
\text { demand } \\
X_{t} \leq c_{t} & t & =1, \ldots . \bar{t} & \\
\text { capacity } \\
I_{t}=I_{t-1}+X_{t}-S_{t}, & t=1, \ldots . \bar{t} & & \text { inventory balance } \\
X_{t}, S_{t}, I_{t} \geq 0 & t & =1, \ldots . . \bar{t} & \\
\text { non-negativity }
\end{array}
$$

Product Mix Planning (I)

- Problem: determine most profitable mix over planning horizon
- Motivation for Study:
- linking marketing/promotion to logistics.
- Bottleneck identification.
- Inputs:
- demand forecast by product (family?); may be ranges
- unit hour data
- capacity constraints
- unit profit by product
- holding cost

Product Mix Planning (II)

Verbal Formulation

maximize profit

subject to:

$$
\begin{array}{ll}
\text { production } \leq \text { capacity, } & \begin{array}{l}
\text { at all workstations } \\
\text { in all periods }
\end{array} \\
\text { sales } & \leq \text { demand, }
\end{array} \begin{aligned}
& \text { for all products } \\
& \text { in all periods }
\end{aligned}
$$

Note: we will need some technical constraints to ensure that variables represent reality.

Product Mix Planning (III)

Notation

$i \quad=$ an index of product, $i=1, \ldots . ., m$
$j \quad=$ an index of workstation, $j=1, \ldots . ., n$
$t \quad=$ an index of period, $\quad t=1, \ldots \ldots ., \bar{t}$
$\bar{d}_{i t} \quad=$ maximum demand for product i in period t.
$\underline{d}_{i t}=$ minimum sales allowed of product i in period t
$a_{i j} \quad=$ time required on workstation j to produce one unit of product i.
$c_{j t}=$ capacity of workstation j in period t.
$r_{i} \quad=$ net profit from one unit of product i
$h_{i} \quad=$ cost to hold one unit of i for one period t.
$X_{i t}=$ amount of product i produced in period t
$S_{i t}=$ amount of product i sold in period t.
$I_{i t} \quad=$ inventory of product i at end of t.

Product Mix Planning (IV)

Mathematical Formulation

$$
\max \sum_{t=1}^{\bar{t}} \sum_{i=1}^{m} r_{i} S_{i t}-h_{i} I_{i t} \quad \text { (sales revenue - holding cost) }
$$

subject to

$$
\begin{array}{cll}
\underline{d}_{i t} \leq S_{i t} \leq \bar{d}_{i t} & \text { for all } i, t & \text { (demand) } \\
\sum_{i=1}^{m} a_{i j} X_{i t} \leq c_{j t} & \text { for all } j, t & \text { (capacity) } \\
I_{i t}=I_{i t-1}+X_{i t}-S_{i t}, & \text { for all } i, t & \text { (inventory balance) } \\
X_{i t}, S_{i t}, I_{i t} \geq 0 & \text { for all } i, t & \text { (non-negativity) }
\end{array}
$$

A Product Mix Example (I)

Assumptions:

- two products, P and Q
- constant weekly demand, cost, capacity, etc.
- Objective: maximize weekly profit

Data:

Product	\mathbf{P}	Q
Selling price	$\$ 90$	$\$ 100$
Raw Material Cost	$\$ 45$	$\$ 40$
Max Weekly Sales	100	50
Minutes per unit on Workcenter A	15	10
Minutes per unit on Workcenter B	15	35
Minutes per unit on Workcenter C	15	5
Minutes per unit on Workcenter D	$\mathbf{2 5}$	$\mathbf{1 4}$

A Product Mix Example (II)

A Linear Programming (LP) Approach:

Formulation: $\max 45 X_{P}+60 X_{Q}-5000$ subject to :

$$
\begin{aligned}
& 15 X_{P}+10 X_{Q} \leq 2400 \\
& 15 X_{P}+35 X_{Q} \leq 2400 \\
& 15 X_{P}+5 X_{Q} \leq 2400 \\
& 25 X_{P}+14 X_{Q} \leq 2400
\end{aligned}
$$

Solution: Optimal Objective $=\$ 557.94$

$$
\begin{aligned}
X_{P}^{*} & =75.79 \\
X_{Q}^{*} & =36.09
\end{aligned}
$$

Net Weekly Profit : Round solution down (still feasible) to: $X_{P}^{*}=75$

$$
\begin{aligned}
& X_{Q}^{*}=36 \\
\text { To get } \quad \$ 45 \times 75+\$ 60 \times 36-\$ 5,000 & =\$ 535
\end{aligned}
$$

Extensions to the Basic Product Mix Model (I)

Other Resource Constraints:

Notation:

$$
\begin{aligned}
b_{i j} & =\text { units of resource } j \text { required per unit of product } i \\
k_{j t} & =\text { number of units of resource } j \text { available in period } t \\
X_{i t} & =\text { amount of product } i \text { produced in period } t
\end{aligned}
$$

Constraint for Shared Resource $\boldsymbol{j}: \quad \sum_{i=1}^{m} b_{i j} X_{i t} \leq k_{j t}$

Utilization Matching: Let q represent fraction of rated capacity we are willing to run on resource j.

$$
\sum_{i=1}^{m} a_{i j} X_{i t} \leq q c_{j t} \text { for all } j, t
$$

Extensions to the Basic Product Mix Model (II)

Backorders:

- Substitute $I_{i t}=I_{i t}^{+}-I_{i t}^{-}$
- Allow $I_{i t}$ to become positive or negative
- Penalize $I_{i t}^{+}, I_{i t}^{-}$differently in objective if desired

$$
\max \sum_{t=1}^{\bar{t}}\left\{\sum_{i=1}^{m} r_{i} S_{i t}-h_{i} I_{i t}^{+}-\pi_{i} I_{i t}^{-}\right\}
$$

Overtime:

- Define $O_{j t}$ as hours of OT used on resource j in period t and β_{j} the cost of one overtime hour in workstation j
- Add $O_{j t}$ to $c_{j t}$ in capacity constraint.

$$
\sum_{i=1}^{m} a_{i j} X_{i t} \leq c_{j t}+O_{j t} \text { for all } j, t
$$

- Penalize $O_{j t}$ in objective if desired

$$
\max \sum_{t=1}^{\bar{t}}\left\{\sum_{i=1}^{m} r_{i} S_{i t}-h_{i} I_{i t}^{+}-\pi_{i} I_{i t}^{-}-\sum_{j=1}^{n} \beta_{j} O_{j t}\right\}
$$

Workforce Planning

- Problem: determine most profitable production and hiring/firing policy over planning horizon.
- Motivation for Study:
- hiring/firing vs. overtime vs. Inventory Build tradeoff
- iterative nature of optimization modeling.
- Inputs:
- demand forecast (assume single product for simplicity)
- unit hour data
- labor content data
- capacity constraints
- hiring/ firing costs
- overtime costs
- holding costs
- unit profit

A Workforce Planning Model (I)

Notation

$j=$ an index of workstation, $j=1, \ldots . ., n$
$t=$ an index of period, $t=1, \ldots \ldots . \bar{t}$
$\bar{d}_{t} \quad=$ maximum demand in period t.
$\underline{d}_{t}=$ minimum sales allowed in period t
$a_{j} \quad=$ unit hours on workstation j
$b \quad=$ number of man hours required to produce one unit.
$c_{j t}=$ capacity of work center j in period t.
$r=$ net profit from one unit.
$h \quad=$ cost to hold one unit for one period t.
$l=$ cost of regular time in dollars / man - hour
$l^{\prime}=$ cost of overtime in dollars / man - hour
$e \quad=$ cost to increase workforce by one man - hour
$e^{\prime}=$ cost to decrease workforce by one man - hour

A Workforce Planning Model (II)

Notation (cont.)

$$
\begin{aligned}
\mathrm{X}_{\mathrm{t}}= & \text { amount produced in period } \mathrm{t} \\
\mathrm{~S}_{\mathrm{t}}= & \text { amount sold in period } \mathrm{t} \\
\mathrm{I}_{\mathrm{t}}= & \text { inventory at end of } \mathrm{t} \\
\mathrm{~W}_{\mathrm{t}}= & \text { workforce period } \mathrm{t} \text { in man - hours of regular time } \\
\mathrm{H}_{\mathrm{t}}= & \text { increase (hires) in workforce from period } \mathrm{t}-1 \text { to } \mathrm{t} \text { in } \\
& \text { man - hours. } \\
\mathrm{F}_{\mathrm{t}}= & \text { decrease (fires) in workforce from period } \mathrm{t}-1 \text { to } \mathrm{t} \text { in } \\
& \text { man - hours. } \\
\mathrm{O}_{\mathrm{t}}= & \text { overtime in period } \mathrm{t} \text { in hours }
\end{aligned}
$$

Note, this model only considers a single product. Generalizations to m products are straightforward!

A Workforce Planning Model (III)

Formulation

$$
\max \sum_{t=1}^{\bar{i}}\left\{r S_{t}-h I_{t}-l W_{t}-l^{\prime} O_{t}-e H_{t}-e^{\prime} F_{t}\right\}
$$

subject to

$$
\begin{aligned}
& \quad \underline{d}_{t} \leq S_{t} \leq d_{t} \quad \text { for all } t \\
& \quad a_{j} X_{t} \leq c_{j t} \quad \text { for all } t \\
& I_{t}=I_{t-1}+X_{t}-S_{t}, \text { for all } t \\
& W_{t}=W_{t-1}+H_{t}-F_{t} \\
& \text { for all } t \\
& b X_{t} \leq W_{t}+O_{t} \quad \text { for all } t \\
& X_{t}, S_{t}, I_{t}, O_{t}, W_{t}, H_{t}, F_{t} \geq 0 \text { for all } t
\end{aligned}
$$

A Workforce Planning Example (I)

Problem Description

- 12 month planning horizon
- 168 hours per month
- 15 workers currently in system
- regular time labor at $\$ 35$ per hour
- overtime labor at $\$ 52.50$ per hour
- \$2,500 to hire and train new worker \$2,500/168=\$14.88 $\approx \$ 15 /$ hour
- \$1,500 to lay off worker

$$
\$ 1,500 / 168=\$ 8.93 \approx \$ 9 / \text { hour }
$$

- 12 hours labor per unit
- demand assumed met ($S_{t}=d_{v}$ so S_{t} variables are unnecessary)

A Workforce Planning Example (II)

- Solution:
- LP optimal Solution: layoff 9.5 workers
- Add constraint: $F_{t}=0$
- results in 48 hours/worker/week of overtime
- Add constraint: $O_{t} \leq 0.2 W_{t}$
- Reasonable solution?

Aggregate Planning Conclusions

- No single AP model is right for every situation
- Simplicity promotes understanding
- Linear programming is a useful AP tool
- Robustness matters more than precision
- Formulation and Solution are not separate activities.

