Constructive Research

Methodology workshop 26.11.2001
Casper Lassenius, Timo Soininen, Jari Vanhanen

What is Constructive Research?

- Constructive research
 - Aims at producing novel solutions to practically and theoretically relevant problems
 - Managerial problem solving through the construction of models, diagrams, plans, organizations, etc.
 - Widely used in software engineering and computer science, rarely in management and social sciences
 - The engineering research tradition
 - Often involves other approaches (qual. & quant.)

- Construction
 - An entity, which produces a solution to an explicit problem
 - mathematical algorithm
 - Morse alphabet
 - activity-based costing (ABC)
Research Objectives

- **Key objectives**
 - Quality -- utility as well as functional correctness
 - Cost -- both of development and of use
 - Timeliness -- good-enough result, when it’s needed
- Address problems that affect practical software

Complete Research Result

- **Real World Practical problem**
 - Research Setting Idealized problem
 - Validation Task 1: Does the product solve the idealized problem?
 - Validation Task 2: Does the result help to solve the practical problem?
 - Research product (technique, method, model, system, …)
- **Real World Solution to practical problem**
 - Research Setting Solution to idealized problem
The Constructive Approach as a Methodology

- Is a type of applied studies
 - production of new knowledge in the form of normative applications
 - creates a new reality – does not try to understand, explain, classify, etc. the existing one

- Constructive approach vs.
 - basic studies have no explicit normative purposes
 - development of techniques purely aim at improving skills and means
 - analytic model building (applied studies) has unclear practical adequacy
 - scientific problem solving may produce unique solutions
 - consulting does not presuppose use of scientific methods

Phases of the Constructive Research Process

- Idealized model
 1. Find a practically relevant problem
 2. Obtain an understanding of the topic and the problem
 3. Innovate, i.e., construct a solution idea
 - heuristic process
 - theoretical justification and testing come later
 4. Demonstrate that the solution works
 5. Show theoretical connections and research contribution
 6. Examine the scope of applicability

- In practice the steps do not follow each other in a simple sequence - the process is both iterative and sometimes recursive
1. Finding a relevant problem
2. Preunderstanding

- Finding the problem
 - Sources of problems
 - Literature
 - Colleagues
 - Own experience

- The problem should be *practically* relevant!

- Preunderstanding
 - Practical
 - get your feet wet
 - empirical work, e.g., interview study or observation (participation)

 - Theoretical
 - scan "relevant" literature
 - talk to other researchers
 - get a big picture of existing knowledge
 - ensure *theoretical* relevance

3. Innovate
4. Test / Validate

- Innovate and test phases can be and often are intertwined

- Validation is perhaps the hardest part of constructive research

- Validation should be performed in industrial settings, whenever possible – to ensure practical relevance

- Validation employs other techniques, such as action research and case studies
Market-based Validation of Managerial Constructions

- Weak market test
 - a manager applies the construction in a company

- Semi-strong market test
 - constructions becomes widely adopted by companies

- Strong market test
 - systematic application produces better financial results

- Semi-strong and strong market tests require statistical analysis of a substantial amount of implementation data

Types of Research Validation

- **Persuasion** I thought hard about this, and I believe...
- **Implementation** Here is a prototype of a system that ...
- **Evaluation** Given these criteria, the object rates as ...
- **Analysis** Given the facts, here are consequences ...
 - **Formal model** Rigorous derivation and proof
 - **Empirical model** Data on use in controlled situation
- **Experience** Report on use in practice
 - **Qualitative model** Narrative
 - **Decision criteria** Comparison of systems in actual use
 - **Empirical model** Data, usually statistical, on practice
5. Show theoretical contribution & novelty
6. Examine scope of applicability & generalize

- **Novelty**
 - crucial, but don’t be too hard on yourself
 - Lots of possibilities
 - entirely new idea (rare)
 - cross-domain knowledge sharing
 - improved idea / implementation / solution
 - interesting research approach
 - ...

- **Generalize**
 - broad = good?
 - hypothesize as ground for further testing

- Knowing the field & positioning is crucial to novelty and theoretical contribution

Evaluation Criteria for Constructive Research

- **Construct**
 - Relevance
 - Theoretical Relevance
 - Practical Relevance
 - Novelty
 - Practical utility
 - difficult to assess the practical adequacy of any new construction prior to its implementation
 - difficult because of organizational factors
 - technical success != practical success

- **Research process**
 - rigor
Is the Constructive Approach Scientific?

- Characteristic features of the constructive method
 - step-by-step procedure, where steps can be checked
 - serves some definite purpose, is goal-driven
- Objectivity, criticalness, autonomy
 - checking the steps
- Progressiveness, criticalness
 - shows concretely, which solutions work, and don’t work
 - working constructions tend to lead to new questions
- Relevant, simple, easy to use
 - inadequate solutions become eliminated by users
 - often the simplest idea is the most adequate one
Building Blocks for Research

<table>
<thead>
<tr>
<th>Question</th>
<th>Strategy/Result</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td>Qualitative model</td>
<td>Persuasion</td>
</tr>
<tr>
<td>Characterization</td>
<td>Technique</td>
<td>Implementation</td>
</tr>
<tr>
<td>Method/Means</td>
<td>System</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Generalization</td>
<td>Empirical model</td>
<td>Analysis</td>
</tr>
<tr>
<td>Selection</td>
<td>Analytic model</td>
<td>Experience</td>
</tr>
</tbody>
</table>

A Common Plan

<table>
<thead>
<tr>
<th>Question</th>
<th>Strategy/Result</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td>Qualitative model</td>
<td>Persuasion</td>
</tr>
<tr>
<td>Characterization</td>
<td>Technique</td>
<td>Implementation</td>
</tr>
<tr>
<td>Can X be done better?</td>
<td>Build a Y</td>
<td>Measure Y, compare to X</td>
</tr>
<tr>
<td>Generalization</td>
<td>Empirical model</td>
<td>Analysis</td>
</tr>
<tr>
<td>Selection</td>
<td>Analytic model</td>
<td>Experience</td>
</tr>
</tbody>
</table>
A Common, but Bad, Plan

<table>
<thead>
<tr>
<th>Question</th>
<th>Strategy/Result</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td>Qualitative model</td>
<td>“Look, it works!!”</td>
</tr>
<tr>
<td>Characterization</td>
<td>Devise a technique</td>
<td>Implementation</td>
</tr>
<tr>
<td>Can X be done better?</td>
<td>System</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Generalization</td>
<td>Empirical model</td>
<td>Analysis</td>
</tr>
<tr>
<td>Selection</td>
<td>Analytic model</td>
<td>Experience</td>
</tr>
</tbody>
</table>

Two Other Good Plans

<table>
<thead>
<tr>
<th>Question</th>
<th>Strategy/Result</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can X be done at all?</td>
<td>Qualitative model</td>
<td>“Look, it works!!”</td>
</tr>
<tr>
<td>Characterization</td>
<td>Technique</td>
<td>Implementation</td>
</tr>
<tr>
<td>Method/Means</td>
<td>Build a Y that does X</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Is X always true of Y?</td>
<td>Empirical model</td>
<td>Check proof</td>
</tr>
<tr>
<td>Selection</td>
<td>Formally model Y, prove X</td>
<td>Experience</td>
</tr>
</tbody>
</table>
Sometimes a breakthrough (but sometimes nonsense)

<table>
<thead>
<tr>
<th>Question</th>
<th>Strategy/Result</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td>Formulate new approach</td>
<td>Argue carefully on merits</td>
</tr>
<tr>
<td>Change basic assumptions</td>
<td>Technique</td>
<td>Implementation</td>
</tr>
<tr>
<td>Method/Means</td>
<td>System</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Generalization</td>
<td>Empirical model</td>
<td>Analysis</td>
</tr>
<tr>
<td>Selection</td>
<td>Analytic model</td>
<td>Experience</td>
</tr>
</tbody>
</table>

References
